FIG. 5. Number of electrons in sample 7B as a function of pressure. The points are the values of n deduced from the experimental data. The lines are calculated from the Kane's $\vec{k} \cdot \vec{p}$ model with $P_K = 8.4 \times 10^{-8}$ eV/cm, $\alpha = dE_E/dP = 7.0 \times 10^{-6}$ eV/bar. kbar), R is constant initially and then shows strong quantum effects but remains negative. The resistivity rises very rapidly with transverse magnetic field from 0.03 Ω cm to more than 80 Ω cm at 20 kG. At high fields the Hall angle was less FIG. 6. Electron mobility as a function of pressure for the three samples. The variation of the reciprocal effective mass due to the change in $E_{\rm g}$ is shown by the dashed lines for comparison. The mobility is seen to increase faster than $1/m^*$ at low pressure, and for sample 7B at 4.2 °K to turn downward above 2 kbar. TABLE I. Values for the carrier concentrations and mobilities at atmospheric pressure. | | | $(cm^2V^{-1}sec^{-1})$ | 6.3×10^{5} | 4.6×10^4 | 1.6×10^4 | |--|-------|---|--|----------------------|----------------------| | | . P=0 | (cm ⁻³) | 3,4×10 ¹⁴ | 8.8×10^{14} | 3.2×10^{15} | | | 4,2°K | $(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{sec}^{-1})$ | : | 92 | 78 | | | | ρ (cm ⁻³) | E
•
• | 1.5×10^{17} | 7.6×10^{17} | | | P=0 | $^{\mu_n}$ (cm 2 V $^{-1}$ sec $^{-1}$) | 3.7×10^{5} | 3.2×10^4 | 2.5×10^4 | | | | (cm ⁻³) | 5.3×10^{15} | 3.0×10^{15} | 4.8×10^{15} | | | N. 41 | $(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{sec}^{-1})$ | 450 $(P > 5 kbar)$ | 174 | 168 | | | | (cm ⁻³) | 1.5 × 10 ¹⁶ ($P > 5$ kbar) | 6.3×10^{17} | 8.3×10^{17} | | | | × | 0.149 ± 0.005 | 0.149 ± 0.005 | 0.138 ± 0.005 | | The second secon | | Sample | 7B | 7B1. | 8B |